船舶与海洋工程系
电子邮件:zhengshun.cheng@sjtu.edu.cn
通讯地址:上海市东川路800号木兰船建大楼B805A
个人主页:https://faculty.sjtu.edu.cn/chengzhengshun
1987年生,博士,副教授,博士生导师
教育背景:
2013.06-2016.06 挪威科技大学 海洋工程 博士
2010.09-2013.03 船舶与海洋工程 硕士
2006.09-2010.07 船舶与海洋工程 本科
工作经历:
2019.05-至今 船舶与海洋工程系 长聘教轨副教授,博士生导师
2016.06-2019.04 挪威科技大学 海洋工程系 博士后
2015.08-2015.10 丹麦技术大学 风能系 访问学者
海洋工程结构动力分析与安全评估,包括多物理场耦合动力分析、随机动力分析、可靠性与不确定性评估等
海上风机技术,包括基础设计、非定常气动载荷、非线性水动力载荷、控制设计、一体化全耦合分析、漂浮式风机新概念等
新型海洋结构物设计与分析,包括超大型浮桥、深远海养殖装备、漂浮式光伏等
国家自然科学基金同行评审专家
教育部学位与研究生教育发展中心论文评审专家
国际SCI期刊Frontiers in Energy Research副主编(2021-现在)
国际SCI期刊Ocean Engineering客座编辑(2022-2023)
Advances in Bridge Engineering客座编辑(2020,2023)
国家重点研发计划政府间国际科技创新合作项目,2023YFE0110000
国家自然科学基金面上项目,42176210
国家自然科学基金青年项目,52201330
国家级青年人才项目
三亚崖州湾科技城管理局重点项目
ResearchGate 主页: https://www.researchgate.net/profile/Zhengshun_Cheng
Google Scholar主页: https://scholar.google.com/citations?user=UcyFd6EAAAAJ&hl=en
外文期刊论文(* corresponding author)
海洋可再生能源(主要为海上风机)
Yang C, Cheng Z*, Xiao L, Tian X, Liu M, Wen B. A gradient-descent-based method for design of performance-scaled rotor for floating wind turbine model testing in wave basins. Renewable Energy, 2022, 187:144-155
Yu Z*, Amdahl J, Rypestøl M, Cheng Z. Numerical modelling and dynamic response analysis of a 10 MW semi-submersible floating offshore wind turbine subjected to ship collision loads. Renewable Energy, 2022, 184:677-699
Li X, Wei H*, Xiao L, Cheng Z, Liu M. Study on the effects of mooring system stiffness on air gap response. Ocean Engineering, 2021, 239:10979
Cao Q, Xiao L*, Cheng Z, Liu M. Dynamic responses of a 10 MW semi-submersible wind turbine at an intermediate water depth: A comprehensive numerical and experimental comparison. Ocean Engineering, 2021, 232: 109138
Cao Q, Xiao L*, Cheng Z, Liu M, Wen B. Operational and extreme responses of a new concept of 10MW semi-submersible wind turbine in intermediate water depth: An experimental study. Ocean Engineering, 2020, 217:10800
Cheng Z*, Madsen HA, Gao Z, Moan T. A fully coupled method for numerical modeling and dynamic analysis of floating vertical axis wind turbines. Renewable Energy, 2017, 107: 604-619.
Cheng Z*, Madsen HA, Chai W, Gao Z, Moan T. A comparison of extreme structural responses and fatigue damage of semi-submersible type floating horizontal and vertical axis wind turbines. Renewable Energy, 2017, 108:207-219.
Cheng Z*, Madsen HA, Gao Z, Moan T. Effect of the number of blades on the dynamics of floating straight-bladed vertical axis wind turbines. Renewable Energy, 2017, 101:1285-1298.
Cheng Z*, Wang K, Gao Z, Moan T. A comparative study on dynamic responses of spar-type floating horizontal and vertical axis wind turbines. Wind Energy, 2017, 20(2):305-323.
Cheng Z, Wen TR, Ong MC, Wang K*. Power performance and dynamic responses of a combined floating vertical axis wind turbine and wave energy converter concept. Energy, 2019, 171: 190-204
Zhao Y*, Cheng Z, Gao Z, Sandvik PC, Moan T. Numerical study on the feasibility of offshore single blade installation by floating crane vessels. Marine Structures, 2019, 64: 442-462
Zhao Y, Cheng Z*, Sandvik PC, Gao Z, Moan T, Buren, EV. Numerical modeling and analysis of the dynamic motion response of an offshore wind turbine blade during installation by a jack-up crane vessel. Ocean Engineering, 2018, 165:353-364.
Zhao Y, Cheng Z*, Sandvik PC, Gao Z, Moan T. An integrated dynamic analysis method for simulating installation of single blades for wind turbines. Ocean Engineering, 2018, 152:72-88.
Tu Y, Cheng Z*, Muskulus M. Global slamming forces on Jacket structures for offshore wind applications. Marine Structures, 2018, 58: 53-72.
Cheng Z*, Wang K, Ong MC. Assessment of performance enhancement of a semi-submersible vertical axis wind turbine with an optimized Darrieus rotor. Engineering Structures, 2018, 167: 227-240.
Li L, Cheng Z, Yuan Z*, Gao Y. Short-term extreme response and fatigue damage of an integrated wind, wave and tidal energy system. Renewable Energy, 2018, 126:617-629.
Tu Y, Cheng Z*, Muskulus M. A global slamming force model on offshore wind Jacket structures. Marine Structures, 2018, 60:201-217.
超长浮桥
Cui M, Cheng Z*, Moan T. A Generic Method for Assessment of Inhomogeneous Wave Load Effects of Very Long Floating Bridges. Marine Structures. 2022, 83:103186
Cheng Z*, Svangstu E, Gao Z, Moan T. Assessment of inhomogeneity in environmental conditions in a Norwegian fjord for design of floating bridges. Ocean Engineering, 2021, 220:108474
Cheng Z*, Gao Z, Moan T. Extreme Responses and Associated Uncertainties for a Long End-Anchored Floating Bridge. Engineering Structures, 2020, 219, 110858
Cheng Z*, Svangstu E, Gao Z, Moan T. Long-term joint distribution of environmental conditions in a Norwegian fjord for design of floating bridges. Ocean Engineering, 2019, 191, 106472
Cheng Z*, Gao Z, Moan T. Numerical modeling and dynamic response analysis of a floating bridge subjected to wind, wave and current loads. Journal of Offshore Mechanics and Arctic Engineering, 2019, 141 (1): 011601
Cheng Z*, Gao Z, Moan T. Hydrodynamic load modeling and analysis of a floating bridge inhomogeneous wave conditions. Marine Structures, 2018, 59: 122-141.
Cheng Z*, Gao Z, Moan T. Wave load effect analysis of a floating bridge in a fjord considering inhomogeneous wave conditions. Engineering Structures, 2018, 163:197-214.
Cheng Z*, Svangstu E, Gao Z, Moan T. Field measurements of inhomogeneous wave conditions in Bjørnafjorden. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2019, 145(1):05018008
课程教学:
[1] 《船舶与海洋工程导论》,NAOE2301,授课对象:本科生
[2] 《海洋结构物动力学》,NAOE4308,授课对象:本科生
[3] 《Scientific Writing, Integrity and Ethics》,GE6001,授课对象:研究生
[4] 《随机理论及其在海洋工程中的应用》,NAOE9107,授课对象:研究生
[5] 《海上风机设计与分析》,NAOE8124,授课对象:研究生
OMAE Conference Best Paper Award, 2023
Moan-Faltinsen Best Paper Award, 2017
Marie Curie ITN fellowship, 2013