船舶与海洋工程系
办公电话:+86-21-34206642
传真:+86-21-34206642
电子邮件:wytang@sjtu.edu.cn
通讯地址:上海交大闵行校区木兰船建楼B417室
2017.01-至今,,长聘教授,结构力学研究所所长,其中2017.09-2020.08担任科研副经理
2006.08-2016.12,,教授(其中:2007.10-2008.01,美国密西根大学,高级访问学者),
结构力学研究所常务副所长、所长
2004.04-2006.07,,副教授,结构力学研究所常务副所长
1999.12-2004.03,船舶与海洋工程学院,副教授(其中2001.01起担任结构力学研究所副所长)
1997.08-1999.11,船舶与海洋工程学院,讲师
1994.09-1997.07,,船舶结构力学,博士(导师为我国船舶结构力学奠基人之一陈铁云教授)
1991.09-1994.07,华中理工大学,船舶结构力学,硕士
1987.09-1991.07,华中理工大学,船舶工程,本科
Ø 船舶及深海平台结构强度
Ø 结构动力分析
Ø 复合材料结构力学
Ø 结构可靠性分析
Ø 结构动态数学模型及计算机仿真
Ø 风险评估
Ø 结构有限元分析技术
Ø 爆炸与冲击动力学
Ø 流固耦合
目前担任的较重要兼职为:
Ø 2009-今,International Ship and Offshore Structures Congress(ISSC),技术委员会委员
Ø 2009-今,中国造船工程学会船舶力学学术委员会,委员,结构强度专业学组组长(2014年)
Ø 2012-今,上海市船舶与海洋工程学会,船舶结构力学专业学术委员会主任,学术工作委员会委员,常务理事(2021年)
Ø 2012-今,工信部高技术船舶科研计划专家咨询委员会,基础技术专家组成员,船舶总体专家组成员(2016年)
Ø 2005-今,中国钢结构协会海洋钢结构分会,理事、常务理事、副理事长(2016年)
Ø 2016-今,国防科工局军工船舶行业标准化技术委员会,委员
Ø 2016-今,全国海洋船标准化技术委员会船舶基础分技术委员会,委员
Ø 2013-今,国家能源LNG海上储运装备重点实验室,技术委员会,委员
Ø 2012-今,工信部船舶安全风险评估(SLA/FSA)专家工作组,成员
Ø 2020-今,中国船舶集团有限公司科学技术委员会民船与海工总体专业组,成员
Ø 2019-今,中国船级社第八届技术委员会,委员;结构分委会,委员
近年来还曾担任型号研制、国家安全重大基础研究、国防科技创新特区重点项目、工信部创新专项等的咨询专家,中国船舶工业集团公司、部分省市的科技进步奖评审专家,以及《中国舰船研究》、《船舶与海洋工程》、《海洋工程》、《振动与冲击》、《船海工程》等本领域重要期刊的编委。
主持或参与国家自然科学基金、国家重点、重大科技(攻关)、国家863、工信部重大专项、国防预研等四十余项国家级科研项目的研究工作。擅长于结构有限元分析评估,熟悉各船级社的船舶、海洋工程结构规范,尤其是直接计算要求和实施方法。近十年来,承接了大量实际工程项目中的结构分析评估任务并获得用户好评,包括各类油船、散货船、化学品船、集装箱船、矿砂船、气垫船、双体船、LNG船、半潜船的整船、局部强度、屈曲和疲劳分析;LNG船、沥青船的热应力分析;海洋工程结构物中FPSO和半潜平台的整船、局部结构、FPSO上的处理橇、塔等结构的强度、疲劳分析;升船机、大型建筑钢结构、起重船及起重设备等的强度分析评估;船级社规范所要求的各类船舶结构的直接计算评估等。
1、英文论文
[1] Duan Z, Sun H, Cheng C, Tang W*, Xue H. A moving-boundary based dynamic model for predicting the transient free convection and thermal stratification in liquefied gas storage tank[J]. International Journal of Thermal Sciences, 2021,160:106690.
[2] Duan Z, Xue H, Gong X, Tang W*. A thermal non-equilibrium model for predicting LNG boil-off in storage tanks incorporating the natural convection effect[J]. Energy, 2021,233:121162.
[3] Gao X, Xu S, Tang W*. Hybrid analytic-FEM approach for dynamic response analysis of air-cushion vehicle skirts[J]. Marine Structures, 2021,79:103062.
[4] Lu Y, Liu K, Wang Z, Tang W*. Modelling of ductile fracture in ship structures subjected to quasi-static impact loads[J]. International Journal of Impact Engineering, 2021,156:103941.
[5] Yuan Y, Zheng M, Xue H, Tang W. Nonlinear riser-seabed interaction response among touchdown zone of a steel catenary riser in consideration of vortex-induced vibration[J]. Ocean Engineering, 2021,227:108891.
[6] Jiang Y, Tang W*. Numerical study of section geometry of flexible bag of air cushion vehicle subjected to slamming loads[J]. Ocean Engineering, 2021,227:108894.
[7] Wu G, Kong S, Tang W, Lei R, Ji S. Statistical analysis of ice loads on ship hull measured during Arctic navigations[J]. Ocean Engineering, 2021,223:108642.
[8] Yuan Y, Xue H, Tang W. Internal laminar flow effect on the nonlinear dynamic response of marine risers under uniform ocean current[J]. Ships and offshore structures, 2021:1-10.
[9] Zhang H, Yuan Y, Tang W, Xue H, Liu J, Qin H. Numerical analysis on three-dimensional green water events induced by freak waves[J]. Ships and offshore structures, 2021,16(S1):33-43.
[10] Xu S, Tang Y, Chen K, Zhang Z, Ma T, Tang W*. Numerical investigation on pressure responsiveness properties of the skirt-cushion system of an air cushion vehicle[J]. International Journal of Naval Architecture and Ocean Engineering, 2020,12:928-942.
[11] Yuchao Yuan, Hongxiang Xue, Wenyong Tang. Nonlinear dynamic response analysis of marine risers under non-uniform combined unsteady flows[J]. Ocean Engineering, 2020, 213: 107687.
[12] Zhongdi Duan, Guoliang Ding, Wenyong Tang*, Tao Ren. A thermodynamic model for predicting transient pressure evolution in response to venting and vaporization of liquefied gas under sudden release[J]. Journal of Hazardous Materials, 2020, 395: 122460.
[13] Shaofei Ren, Wenyong Tang, Zhuang Kang, Hang Geng. Numerical study on the axial-torsional response of an unbonded flexible riser with damaged tensile armor wires[J]. Applied Ocean Research, 2020, 97: 102045.
[14] Qingsheng Liu, Hongxiang Xue, Wenyong Tang, Yuchao Yuan. Theoretical and numerical methods to predict the behaviour of unbonded flexible riser with composite armour layers subjected to axial tension[J]. Ocean Engineering, 2020, 199: 107038.
[15] Hao Qin, Lin Mu, Wenyong Tang, Zhe Hu. A Concurrent Multi-Process Refinement method applied in two-dimensional strong-coupled fluid-structure interaction problems[J]. Ocean Engineering, 2020, 197: 106912.
[16] Yue Lu, Kun Liu, Zili Wang, Wenyong Tang*. Dynamic behavior of scaled tubular K-joints subjected to impact loads[J]. Marine Structures, 2020, 69: 102685.
[17] Yuan Y.C., Xue H.X., Tang W.Y., Liu J., Fatigue Analysis of Vortex-induced Vibration for Marine Risers with Top-end Platform Motion Excitations. Proceedings of the 14th International Symposium on Practical Design of Ships and Other Floating Structures.
[18] Yuchao Yuan, Hongxiang Xue, Wenyong Tang. VIV response characteristics of a top-tensioned riser with bi-frequency parametric excitation[J]. Ocean Engineering, 2019, 190: 106490.
[19] Hao Qin, Lin Mu, Wenyong Tang, Zhe Hu. Numerical study on structural response of anti-sloshing baffles of different configurations in a sloshing tank considering hydroelasticity[J]. Ocean Engineering, 2019, 188: 106290.
[20] Hongxiang Xue, Yuchao Yuan, Wenyong Tang. Numerical investigation on vortex-induced vibration response characteristics for flexible risers under sheared-oscillatory flows[J]. International Journal of Naval Architecture and Ocean Engineering, 2019, 11(2): 923-938.
[21] Hao Qin, Lin Mu, Wenyong Tang, Zhe Hu. Numerical study of the interaction between peregrine breather based freak waves and twin-plate breakwater[J]. Journal of Fluids and Structures, 2019, 87: 206-227.
[22] Xiaodong Li, Wenyong Tang*. Structural risk analysis model of damaged membrane LNG carriers after grounding based on Bayesian belief networks[J]. Ocean Engineering, 2019, 171: 332-344.
[23] Yuchao Yuan, Hongxiang Xue, Wenyong Tang. A numerical investigation of Vortex-Induced Vibration response characteristics for long flexible cylinders with time-varying axial tension[J]. Journal of Fluids and Structures, 2018, 77: 36-57.
[24] Yuchao Yuan, Hongxiang Xue, Wenyong Tang. Numerical analysis of Vortex-Induced Vibration for flexible risers under steady and oscillatory flows[J]. Ocean Engineering,2018,148: 548-562.
[25] Kunpeng Wang, Chunyan Ji, Hongxiang Xue, Wenyong Tang. VIV-induced fatigue damage study of helical wires in catenary unbonded flexible riser in time domain[J]. Journal of Marine Engineering & Technology,2018,17(1):1-11.
[26] Yuan Y.C., Xue H.X., Tang W.Y., Liu J., VIV Response and Fatigue Damage of Flexible Cylinders with Time-Varying Axial Tension. Proceedings of the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering.
[27] Kunpeng Wang, Chunyan Ji, Hongxiang Xue, Wenyong Tang. Fatigue sensitivity analysis of steel catenary riser near touchdown point[J]. Journal of Shanghai Jiaotong University (Science),2017,22(5):570-576.
[28] Kunpeng Wang,Chunyan Ji,Hongxiang Xue,Wenyong Tang. Frequency domain approach for the coupled analysis of floating wind turbine system[J]. Ships and Offshore Structures,2017,12(6):767-774.
[29] Hao Qin, Wenyong Tang*, Hongxiang Xue, Zhe Hu. Dynamic response of a horizontal plate dropping onto nonlinear freak waves using a fluid–structure interaction method[J]. Journal of Fluids and Structures, 2017, 74: 291-305.
[30] Zhe Hu, Wenyong Tang*, Hongxiang Xue, Xiaoying Zhang, Kunpeng Wang. Numerical study of rogue wave overtopping with a fully-coupled fluid-structure interaction model[J]. Ocean Engineering, 2017, 137: 48-58.
[31] Yuan Y.C., Xue H.X., Tang W.Y., Added mass variation effect on vortex-induced vibration for flexible risers based on force-decomposition model[J]. Ships and Offshore Structures, 2017:1-12.
[32] Liu D, Tang W*, Wang J, et al. Modelling of liquid sloshing using CLSVOF method and very large eddy simulation[J]. Ocean Engineering, 2017, 129: 160-176.
[33] Liu D, Tang W*, Wang J, et al. Hybrid RANS/LES simulation of sloshing flow in a rectangular tank with and without baffles[J]. Ships and Offshore Structures, 2017: 1-11.
[34] Qin H, Tang W*, Hu Z, et al. Structural response of deck structures on the green water event caused by freak waves[J]. Journal of Fluids and Structures, 2017, 68: 322-338.
[35] Qin H, Tang W*, Xue H, et al. Numerical study of wave impact on the deck-house caused by freak waves[J]. Ocean Engineering, 2017, 133: 151-169.
[36] Qin H, Tang W*, Xue H, et al. Numerical study of nonlinear freak wave impact underneath a fixed horizontal deck in 2-D space[J]. Applied Ocean Research, 2017, 64: 15-168.
[37] Yuan Y, Xue H, Tang W. An improved time domain coupled model of Cross-Flow and In-Line Vortex-Induced Vibration for flexible risers[J]. Ocean Engineering, 2017, 136: 117-128.
[38] Chen Jianping, Tang Wenyong. A mesh-free analysis method of structural elements of engineering structures based on B-spline wavelet basis function[J]. Structural Engineering and Mechanics, 2016, 57(2):281-294.
[39] Liu Dongxi, Tang Wenyong*, Wang Jin,Xue Hongxiang,Wang Kunpeng. Comparison of laminar model, RANS, LES and VLES for simulation of liquid sloshing[J]. Applied Ocean Research, 2016, 59(9):638-649.
[40] Hu Zhe, Tang Wenyong*, Xue Hongxiang, Xiaoying Zhangc. A SIMPLE-based monolithic implicit method for strong-coupled fluid-structure interaction problems with free surfaces[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 299(2):90-115.
[41] Hu Zhe, Tang Wenyong*, Xue Hongxiang, Zhang Xiaoying. Numerical Wave Tank Based on A Conserved Wave-Absorbing Method[J]. China Ocean Engineering, 2016, 30(1):137-148.
[42] Ren Shaofei, Xue Hongxiang, Tang Wenyong. Analytical and numerical models to predict the behavior of unbonded flexible risers under torsion[J]. China Ocean Engineering, 2016, 30(2):243-256.
[43] Ren Shaofei, Tang Wenyong*, Xue Hongxiang. Analysis on Factors Influencing Strains of Unbonded Flexible Risers Under Pressures[J]. Journal of Ship Mechanics, 2015, 19(12): 1525-1534.
[44] YANG Yong, CHE Chidong, TANG Wenyong. Reasearch of Oil Stiffness Influence on Shafting Torsional Vibration Based on Wave Approach[J]. Journal of Ship Mechanics, 2015, 19(9): 104-109.
[45] Chen Jian-ping, Tang Wen-yong, Xu Man-ping. A meshless analysis method of the ship structures based on MLPG method[C]. ISOPE 2015, 2015, :1166-1170.
[46] Chen Jian-ping, Tang Wen-yong, Xu Man-ping. A mesh-free analysis of the ship structures based on daubechies wavelet basis theory[J]. Journal of Information & Computational Science, 2015, 12(5):1675–1684.
[47] Shi Jia-rui, Wang Jin, Tang Wen-yong, Xue Hong-xiang. Structural reliability analysis of deep-water SDPSO platform[C]. ISOPE 2015, 2015, :772-778.
[48] Liu Dong-xi, Tang Wen-yong, Wang Jin. Numerical Simulation of Interfacial Sloshing in the SDPSO’s Storage Tank[C]. ISOPE 2015, 2015, :917-923.
[49] Hu Zhe, Tang Wen-yong*, Xue Hong-xiang, Zhang Xiao-ying, Guo Jin-ting. Numerical simulations using conserved wave absorption applied to Navier–Stokes equation model[J]. Coastal Engineering, 2015, 99:15-25.
[50] Hu Zhe, Xue Hong-xiang, Tang Wen-yong. A combined wave-dam-breaking model for rogue wave overtopping[J]. Ocean Engineering, 2015, 104:77-88.
[51] Liu Kun, Wang Zi-li, Tang Wen-yong*, Zhang Yan-chang, Wang Ge. Experimental and numerical analysis of laterally impacted stiffened plates considering the effect of strain rate[J]. Ocean Engineering, 2015, 99:44-54.
[52] Hu Zhe, Tang Wen-yong*, Xue Hong-xiang,Zhang Xiao-ying. Numerical study of Rogue waves as nonlinear Schrödinger breather solutions under finite water depth[J]. Wave Motion, 2015, 52:81-90.
[53] Xue Hong-xiang, Wang Kun-peng, Tang Wen-yong. A practical approach to predicting cross-flow and in-line VIV response for deepwater risers[J]. Applied Ocean Research, 2015, 52:92-101.
[54] Hu Zhe, Xue Hong-xiang, Tang Wen-yong. Numerical study of nonlinear Peregrine breather under finite water depth[J]. Ocean Engineering, 2015, 108:70-80.
[55] Wang Kun-Peng, Tang Wen-yong*, Xue Hong-xiang. Time domain approach for coupled cross-flow and in-line VIV induced fatigue damage of steel catenary riser at touchdown zone[J]. Marine Structures, 2015, 41:267-287.
[56] YANG Yong, CHE Chi-dong, TANG Wen-yong. Applications of Reducing Vibration and Noises in a Polar Scientific Icebreaker based on Green Shipbuilding Technologies[J]. Journal of Ship Mechanics, 2014, 18(6):724-737.
[57] Shaofei Ren, Wenyong Tang, Hongxiang Xue, Zhe Hu. Numerical modeling of unbonded flexible risers under combined symmetrical loads[C]. Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, 2014:V06AT04A017.
[58] Zhe Hu, Wenyong Tang, Hongxiang Xue, Shaofei Ren. Response of beams under the impact of freak waves[C]. Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, 2014:V04AT02A028.
[59] WANG Kun-peng, TANG Wen-yong*, XUE Hong-xiang. Cross-flow VIV induced fatigue damage of deepwater steel catenary riser at touch-down point[J]. China Ocean Engineering, 2014, 28(1):81-93.
[60] Zhe Hu, Wenyong Tang*, Hongxiang Xue. A probability-based superposition model of freak wave simulation[J]. Applied Ocean Research, 2014, 2014(47):284-290.
[61] Hongxiang Xue, Wenyong Tang, Xue Qu. Prediction and analysis of fatigue damage due to cross-flow and in-line VIV for marine risers in non-uniform current[J]. Ocean Engineering, 2014, 2014(83):52-62.
[62] REN Shao-fei, TANG Wen-yong*, GUO Jin-ting. Behavior of unbonded flexible risers subject to axial tension[J]. China Ocean Engineering, 2014, 28(2):249-258.
[63] Wang Kunpeng, Xue Hongxiang, Tang Wenyong. Time domain prediction approach for cross-flow VIV induced fatigue damage of steel catenary riser near touchdown point[J]. Applied Ocean Research, 2013, 43:166-174.
[64] YANG Yong, TANG Wen-yong*, CHE Chi-dong. Shafting Alignment based on Improved Three-moment Method with Hydrodynamic Simulation for Twin Propulsion Systems[J]. Journal of Ship Mechanics, 2013, 9:1038-1052.
[65] Kunpeng Wang, Xue Hongxiang, Wenyong Tang, Jinting Guo. Fatigue analysis of steel catenary riser at the touch-down point based on linear hysteretic riser-soil interaction model[J]. Ocean Engineering, 2013, 68:102-111.
[66] Yong Yang, Wen-Yong Tang*, Chi-Dong Che, Gui-Chen Zhang. Shafting Alignment Based on Hydrodynamics Simulation Under Larger Rudder Corner Conditions[J]. Journal of Shanghai Jiaotong University (Science), 2012, 17(4):427-435.
[67] Huang Zhao-yu, Tang Wen-yong*, Wang Yi, Wang Wen-tao. Dynamic stress analysis of the leg joints of self-elevating platform[J]. China Ocean Engineering, 2011, 25(2):319-326.
[68]Xue Hongxiang, Guo Jinting, Tang Wenyong, Zhang Shengkun. Characteristic analysis of VIV-induced fatigue damage of top tensioned risers based on simplified model[J]. Journal of Offshore Mechanics and Arctic Engineering, 2011, 133(2)
[69] Wei Zhang; Wenyong Tang*; Nianzhong Chen; Shengkun Zhang. The Effects of Stochastic Characteristics of Materials on the Reliability of a Composite Ship Hull[J], Journal of Marine Science and Application, 2011, 10(1):1-6
[70] Yang, Yong; Tang, Wenyong*; Ma, Jie. Optimal design for a VLCC propulsion system based on torsional vibration analysis[C]. Procedia Engineering, 2011, Vol.15 (EI)
[71] Yang, Yong; Tang, Wenyong*; Ma, Jie. Analysis of shafting alignment for container vessels based on improved transition matrix method[C]. Procedia Engineering, 2011, Vol.15 (EI)
[72] Ding, Shi-Feng; Tang, Wen-Yong*; Zhang, Sheng-Kun. Research on temperature field and thermal stress of liquefied natural gas carrier with incomplete insulation[J]. Journal of Shanghai Jiaotong University (Science), 2010, 15(3):346-353
[73] Zhou, Jia; Tang, Wen-Yong*; Zhang, Sheng-Kun. Sea keeping analysis of air cushion vehicle with different wave angles under the operation resistance[J]. Journal of Shanghai Jiaotong University (Science), 2009, 14(4):471-475
[74] Xue, Hong-Xiang; Tang, Wen-Yong*; Zhang, Sheng-Kun. Simplified model for evaluation of VIV-induced fatigue damage of deepwater marine risers[J]. Journal of Shanghai Jiaotong University (Science), 2009, 14(4):435-442
[75] Cai,Z.Y.; Tang,W.Y.*; Zhang,S.K. Damage behavior of laminated E-glass/epoxy beams with an initial delamination subjected to an axial impact[J]. Mechanics of Composite Materials, 2009, 45(1):33-44
[76] Zhou J; Guo J.T.; Tang W.Y.; Zhang S.K. Nonlinear FEM Simulation of Air Cushion Vehicle (ACV) Skirt Joint Under Tension Loading[J]. Naval Engineers Journal, 2009, 121(2):91-97
[77] Xue, Hong-Xiang; Tang, Wen-Yong; Zhang, Sheng-Kun. Simplified prediction model for vortex-induced vibrations of top tensioned risers[J]. China Ocean Engineering, 2008, 22(2): 291-302
[78] Zhang, Dao-Kun; Tang, Wen-Yong*; Zhang, Sheng-Kun. Time-variant reliability analysis of FPSO hull girder considering corrosion based on statistics[J]. China Ocean Engineering, 2007, 21(2): 197-206
[79] Wang, Tian-Lin; Tang, Wen-Yong*; Zhang, Sheng-Kun. Nonlinear dynamic response and buckling of laminated cylindrical shells with axial shallow groove based on a semi-analytical method[J]. Journal of Shanghai University, 2007, 11(03): 223-228 (EI)
[80] Wang, Tian-Lin; Tang, Wen-Yong*; Zhang, Sheng-Kun. Nonlinear dynamic buckling of damaged composite cylindrical shells[J]. Journal of Shanghai Jiaotong University (Science), 2007, 12(01): 66-72
船舶与海洋工程结构专业的主要骨干教师,讲授的课程包括船舶结构力学、结构安全性评估理论及应用、结构疲劳与断裂、高等计算结构力学、高等结构动力学等。已经培养了大批本科员工和八十余名硕士、博士研究生,他们目前遍布国内外船舶与海洋工程领域的各类设计研究机构、高校、船厂以及船级社等。作为副导师协助张圣坤教授指导博士研究生,已获得两篇全国优秀博士论文,一篇上海市优秀博士论文。
曾获中国船舶工业总公司科技进步三等奖,2004年首届上海市高校优秀青年教师后备人选,2008年上海市高校优秀青年教师奖。